
Spin and the Proton Transverse Shape

• Proton form factor, model calculation- 
proton not round via  spin dependent 
density

• Model independent neutron charge 
density

• Measure shape of proton on lattice (impact 
parameter dependent GPD) coordinate-
space probability, and in    experiment  
(TMD): TMD is momentum-space 
probability

• GAM “Transverse Charge Densities” 1
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Ratio of Pauli to Dirac Form Factors 1995 
Frank,Jennings, Miller  theory, data 2000

γ

Impulse approximation

carry orbital angular momentum

This feature of not reaching asymptotic values of Q2 may

be understood by examining the dependence of the inte-

grands of Eqs. !22" and !23" on the value of # . We may write

F1,2!Q
2"!!

0

1

d#I1,2!# ,Q2", !30"

and determine the important regions by examining

I1,2(# ,Q
2). As shown in Figs. 3 and 4 the important contri-

butions occur for a very narrow band of values close to 1

"#!x3!0.145. The sharp peaking is maintained for all of
the values of Q2 considered here, and is a central reason for

the qualitative success of the approximations !28" and !29".
The small factor 1"# multiplies the large factor Q appear-

ing in Eq. !27", and suppresses the dominance of the terms
proportional to Q. The integrands peak at x3!0.15, a small
value !compared to 0.33, expected if each quark were to
carry the same momentum" that indicates the presence of

FIG. 3. Important region of integration for F1, Eq. !30". The
curves show the derivative of I1 for values of Q2

!2,4,6,8,10 GeV2, with the larger values occurring for the smaller
values of Q2.

FIG. 4. Important region of integration for F2, Eq. !30". The
curves show the derivative of I1 for values of Q2

!2,4,6,8,10 GeV2, with the larger values occurring for the smaller
values of Q2.

FIG. 5. The effect of varying the parameter $ that governs the

power of the falloff of the wave function of Eq. !14". The curves for
F2 are labeled by the value of $!3.5 that is the correct model value
!solid" or $!3.9 !dashed".

FIG. 6. The effect of varying the parameter $ that governs the

power of the falloff of the wave function of Eq. !14". The curves for
Q F2 /F1 are labeled by the value of $!3.5 !solid" or $!3.9
!dashed". The data for 2%Q2%3.5 GeV2 are from Ref. &1', and
those for 3.5%Q2%5.5 GeV2 are from Ref. &2'.
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Flat due to orbital 
angular momentum
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Model exists

•  lower components of Dirac spinor 
•  orbital angular momentum
•  shape of proton?? Wigner Eckart
   no quadrupole moment
• spin dependent densities SDD
         non-relativistic example
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θ

s        r

Binding pot’l 
rotationally invariant
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Shapes of the proton

vectors n, K, S

Momentum space

Relation between coordinate and momentum space 
densities?  Model independent technique needed.

How to measure?-Lattice and/or experiment

so that we may compute probabilities for a quark to have a

position r!(r ," ,#) and spin direction n. We find

$%r,n&!'(s!$̂%r,n&!(s)

!" d3k*†%k ,r&
1

2
%1"+0!•n+5&*%k ,r&, %14&

with

*%k ,r&!# Fk%r &!s)

#i"• r̂Gk%r &!s)
$ , %15&

and Fk(r)!,d3K-(k ,K).E(K)"M /1/2eiK•r,Gk(r)

!0/0r,d3K-(k ,K)eiK•r/.E(K)"M /1/2. We find

$%r,n&!$U%r & 12 %1"n• ŝ&"$L%r &
1
2 %1"2 r̂• ŝn• r̂#n• ŝ&,

%16&

where $U(r)!,d3kFk
2(r),$L(r)!,d3kGk

2(r). The pattern

is similar to that in momentum space, with $(r,n! ŝ)

!$U(r)"$L(r)cos
2", $(r,n!# ŝ)!$L(r)sin

2", and $„r,n
!( x̂" ŷ)/!2…! 1

2 $U(r)"
1
2 $L(r) .1"2/!2cos " sin "(cos#

"sin#)/.
The ratio $L /$U , which determines the size of the rela-

tivistic effects, can be much larger %Fig. 4& than the factor
+(K) %Fig. 1& controlling the momentum-space shapes, so
that extreme deviations from a spherical shape are possible.

The most likely value of $L /$U is about 0.25, but there is no
limit. The case with $L /$U!3 is shown in Fig. 5. A pretzel
form is obtained if n is out of the page.

The shape of the proton may be defined in terms of matrix

elements of spin-dependent density operators Eqs. %10& and
%13& taken for protons in any fixed polarization state. Rela-
tivity mandates the use of Dirac spinors to describe the

quarks. These components, embodied in Eq. %6&, lead to a
constant ratio of QF2 /F1 in accord with observation, and

also to shapes that depend strongly on the relative orientation

of the quark spin with respect to that of the proton total

angular momentum, Eqs. %11& and %16& %Figs. 2, 3, and 5&.
We next consider experiments aimed at measuring the

matrix element $̂(K,n), Eq. %9&, for real nucleons !N). Ob-
serve that ,d3K $̂(K,n) is a local operator. Its matrix element
is a linear combination of the charge, integrals of spin-

dependent structure functions 1q , and gA that can be deter-
mined from previous measurements. We find

" d3K'N!$̂%K,n!$ ŝ&!N)

!
1

2
'N!2̄%0 &

Q̂

e
%+0$+3+5&2%0 &!N)

! 1
2 .1$ 1

6 %1u"1d"1s &" 1
2 gA/!0.5$0.34, %17&

in which numerical values of 1q are taken from Ref. .15/.
The model we use gives 0.5$0.37 for the above quantity,

FIG. 3. %Color online& n•s!0. Left column, n! x̂ %out of page&,

central: n! ŷ, right n!( x̂" ŷ)/!2. The momentum K increases

from 1 to 4 GeV/c .

FIG. 4. Coordinate space densities.

FIG. 5. %Color online& Shape of the proton coordinate space.
Left, n!s; right, n points out of the page.
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Coordinate 
space
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Model Independent Technique
• Light front coordinates,      momentum frame, 

IMF

6

∞

“Time” x+ = (ct + z)/
√

2 = (x0 + x3)/
√

2, “evolution” p− = (p0 − p3)/
√

2

“Space” x− = (x0 − x3)/
√

2, “Momentum” p+ = (p0 + p3)/
√

2
“Transverse position, momentum, b,p

These coordinates are used to analyze form factors, deep 
inelastic scattering, GPDs,TMDS
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J+(x−,b) =
∑

q

eqq
†
+(x−, b)q+(x−, b)

ρ∞(x−,b) = 〈p+,R = 0, λ|
∑

q

eqq
†
+(x−, b)q+(x−, b)|p+,R = 0, λ〉

ρ(b) ≡
∫

dx−ρ∞(x−,b) =
∫

QdQ

2π
F1(Q2)J0(Qb)

F1 = 〈p+,p′, λ|J+(0)|p+,p, λ〉

Model independent transverse charge density

7

Charge Density 
operator IMF
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Transverse charge densities from 
parameterizations (Alberico)

8

NS60CH01-Miller ARI 23 April 2010 21:57
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Figure 4
Nucleon ρ(b). (a) Proton transverse charge density. (b) Neutron transverse charge density. These densities
are obtained by using the parameterization of Reference 91.

by a nonzero value of Q2, no matter how small, because the momentum difference between the
initial and final states appears via the use of derivatives of momentum-conserving delta functions
in the moments computed in Reference 85. Any attempt to analytically incorporate relativistic
corrections in a p2/m2

q type of expansion would be doomed by the presence of the quark mass mq

to be model dependent. This feature is explained more thoroughly in References 6 and 86.
We exploit Equation 31 by using measured form factors to determine ρ(b). Recent parameter-

izations (87–91) of GE and GM are very useful, so we use Equation 43 to obtain F1 in terms of GE,
GM . Then ρ(b) can be expressed as a simple integral of known functions,

ρ(b) =
∫ ∞

0

d Q Q
2π

J0(Qb)
GE (Q2) + τGM (Q2)

1 + τ
, 44.

where τ = Q2

4M 2 and J0 is a cylindrical Bessel function.
A straightforward application of Equation 44 to the proton using the parameterizations of

Reference 91 yields the results shown in Figure 4a. The curves obtained by using the two different
parameterizations overlap. Furthermore, there seems to be negligible sensitivity to form factors
at very high values of Q2 that are currently unmeasured. The density is peaked at low values of b
but contains has a long positive tail, suggesting a long-ranged, positively charged pion cloud.

The neutron results are shown in Figure 4b. The curves obtained by using the two different
parameterizations seem to overlap. Surprisingly, the central neutron charge density is negative.
The values of the integral of Equation 44 are somewhat sensitive to the regime 8 < Q2 < 16 GeV2,

14 Miller
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ρΓ(b) =
∑

q

eq

∫
dx−q+(x−,b)γ+Γq+(x−,b)

Generalized Coordinate Space Densities

9

Γ =1 /2(1 + n · γ) gives spin-dep density

Local operators calculable as x moments on lattice M. 
Göckeler et al PRL98,222001  

Ã
′′

T10 ∼ sdd

Schierholtz, Zanotti  2009 -this quantity is not zero, proton 
is not round

spin-dependent density

Thursday, October 28, 2010
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Spin dependent densities-transverse- 
Lattice QCDSF, Zanotti, Schierholz...

10

This is not zero! proton is not round
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σi+γ5 ∼ γ0γ+σi,
then relate equal time to ξ+ = 0 by integration over x

Shapes of the proton
• Relate spin dependent density to experiment
• Phys.Rev.C76:065209,2007 

Field-theoretic spin dependent 
momentum density is related to the 
transverse momentum distribution h⊥1T

Mulders Tangerman’96
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Transverse Shapes of the 
Proton

12

GERALD A. MILLER PHYSICAL REVIEW C 76, 065209 (2007)

FIG. 1. (Color online) Transverse shapes of the nucleon:√
2ρ̂RELT (KT , n)/f̃1(K2

T ). The horizontal axis is the direction of
ST and n = ŜT , φn = 0. The shapes vary from circular to highly
deformed as KT is increased from 0 to 2.0 GeV in steps of 0.25 GeV.

where φ is the angle between KT and ST and φn is the
angle between n and ST . The transverse shapes of the proton
(assuming a struck u quark), defined by the right-hand side of
Eq. (19) are shown in Fig. 1, taking φn = 0. Deformation
is seen for values of KT as small as 0.25 GeV, and this
increases as KT increases. Choosing φn = π emphasizes the
nonspherical nature because the first two terms of Eq. (19)
tend to cancel. The shapes of Eq. (19) can be thought of as
transverse projections of the shapes displayed in Ref. [10].

One complication is that it would be difficult to measure
the TMDs at all values of x needed to construct the integrals
appearing here. However, the model [16] indicates that the
functions f1, h1, and h⊥

1T have very similar x dependence, so
that measurements at values of x for which these functions
peak should be sufficient.

FIG. 2. (Color online) Transverse shapes of the nucleon, as in
Fig. 1 except that φn = π .

We also consider the TMDs using the relativistic quark
model used in Ref. [10]. Comparing Eq. (11) with Eq. (18)
to obtain f̃1 =

√
2ARELT , h̃1 =

√
2BRELT , and h̃⊥

1T =√
2CRELT . The results are essentially the same as those

shown in Figs.1 and 2. The amount of deformation can
be characterized by the ratio h̃⊥

1T (K2
T )/(f̃1(K2

T ) + h̃1(K2
T )),

which is about 10% larger for the quark model at small
values of K2

T . For higher values, the two models provide
indistinguishable shapes. See also Ref. [24].

We have shown that the nonspherical nature of the nucleon
shape is closely related to the nonvanishing of the measur-
able TMD h⊥

1T . Indeed, experiments planned at Jefferson
Laboratory aim to specifically measure h⊥

1T [25]. Thus we
await the ultimate determination of a nonzero value to clearly
demonstrate that the shape of the proton is not round.
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Measure         :e,  p  e’, π X

e

e’

γ

ST

Cross section has term proportional to cos 3φ  
Βοer Mulders ’98 there are other ways to see 

H. Avakian LOI at Jlab
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Summary

• Form factors,  GPDs, TMDs, understood from unified 
light-front formulation, GPD-coordinate space 
density,TMD momentum space density

• Neutron central transverse density is negative-
consistent with Cloudy Bag Model

• Proton is not round- lattice QCD spin-dependent-
density is not zero

• Experiment can whether or not proton is round by 
measuring 
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