Spin and the Proton Transverse Shape

- Proton form factor, model calculationproton not round via spin dependent density
- Model independent neutron charge density
- Measure shape of proton on lattice (impact parameter dependent GPD) coordinatespace probability, and in experiment (TMD): TMD is momentum-space probability
- GAM "Transverse Charge Densities"

Ratio of Pauli to Dirac Form Factors 1995 Frank,Jennings, Miller theory, data 2000

Impulse approximation

Model proton wave function $\Psi\left(\mathrm{k}_{\perp}, \mathrm{K}_{\perp}, \xi, \eta\right)$

Poincare invariant
Light front variables for boost: $\mathrm{K} \rightarrow \mathrm{K}+\eta q_{\perp}$
Dirac spinorscarry orbital angular momentum

[^0]
Model exists

lower components of Dirac spinor

 orbital angular momentum shape of proton?? Wigner Eckart no quadrupole moment- spin dependent densities SDD non-relativistic example

I: Non-Rel. $p_{1 / 2}$ proton outside 0^{+}core
$\left\langle\mathbf{r}_{p} \mid \psi_{1,1 / 2 s}\right\rangle=R\left(r_{p}\right) \boldsymbol{\sigma} \cdot \hat{\mathbf{r}}_{p}|s\rangle \quad$ Binding pot'I
rotationally invariant
$\rho(r)=\left\langle\psi_{1,1 / 2 s}\right| \delta\left(\mathbf{r}-\mathbf{r}_{p}\right)\left|\psi_{1,1 / 2 s}\right\rangle=R^{2}(r)$
probability proton at $\mathbf{r} \&$ spin direction \mathbf{n} :
$\rho(\mathbf{r}, \mathbf{n})=\left\langle\psi_{1,1 / 2 s}\right| \delta\left(\mathbf{r}-\mathbf{r}_{p}\right) \frac{(1+\boldsymbol{\sigma} \cdot \mathbf{n})}{2}\left|\psi_{1,1 / 2 s}\right\rangle$
$=\frac{R^{2}(r)}{2}\langle s| \boldsymbol{\sigma} \cdot \hat{\mathbf{r}}(1+\boldsymbol{\sigma} \cdot \mathbf{n}) \boldsymbol{\sigma} \cdot \hat{\mathbf{r}}|s\rangle$

$\mathbf{n} \| \hat{\mathbf{s}}: \quad \rho(\mathbf{r}, \mathbf{n}=\hat{\mathbf{s}})=R^{2}(r) \cos ^{2} \theta$
$\mathbf{n} \|-\hat{\mathbf{s}}: \quad \rho(\mathbf{r}, \mathbf{n}=-\hat{\mathbf{s}})=R^{2}(r) \sin ^{2} \theta$
non-spherical shape depends on spin direction

Shapes of the proton

Momentum space

vectors $\mathrm{n}, \mathrm{K}, \mathrm{S}$

Coordinate space

Pretzelocity

How to measure?-Lattice and/or experiment
Relation between coordinate and momentum space densities? Model independent technique needed.

Model Independent Technique

- Light front coordinates, ∞ momentum frame,

 IMF"Time" $x^{+}=(c t+z) / \sqrt{2}=\left(x^{0}+x^{3}\right) / \sqrt{2}$, "evolution" $\mathrm{p}^{-}=\left(\mathrm{p}^{0}-\mathrm{p}^{3}\right) / \sqrt{2}$
"Space" $x^{-}=\left(x^{0}-x^{3}\right) / \sqrt{2}$, "Momentum" $p^{+}=\left(p^{0}+p^{3}\right) / \sqrt{2}$
"Transverse position, momentum, \mathbf{b}, \mathbf{p}
These coordinates are used to analyze form factors, deep inelastic scattering, GPDs,TMDS

Model independent transverse charge density

$$
\begin{gathered}
J^{+}\left(x^{-}, \mathbf{b}\right)=\sum_{q} e_{q} q_{+}^{\dagger}\left(x^{-}, b\right) q_{+}\left(x^{-}, b\right) \quad \begin{array}{c}
\text { Charge Density } \\
\text { operator } \mathbf{I M F}
\end{array} \\
\rho_{\infty}\left(x^{-}, \mathbf{b}\right)=\left\langle p^{+}, \mathbf{R}=\mathbf{0}, \lambda\right| \sum_{q} e_{q} q_{+}^{\dagger}\left(x^{-}, b\right) q_{+}\left(x^{-}, b\right)\left|p^{+}, \mathbf{R}=\mathbf{0}, \lambda\right\rangle \\
F_{1}=\left\langle p^{+}, \mathbf{p}^{\prime}, \lambda\right| J^{+}(0)\left|p^{+}, \mathbf{p}, \lambda\right\rangle
\end{gathered}
$$

$$
\rho(b) \equiv \int d x^{-} \rho_{\infty}\left(x^{-}, \mathbf{b}\right)=\int \frac{Q d Q}{2 \pi} F_{1}\left(Q^{2}\right) J_{0}(Q b)
$$

Transverse charge densities from parameterizations (Alberico)

Negative central density GAM PRL '07

Generalized Coordinate Space Densities

$$
\begin{aligned}
& \rho^{\Gamma}(\mathbf{b})=\sum_{q} e_{q} \int d x^{-} q_{+}\left(x^{-}, \mathbf{b}\right) \gamma^{+} \Gamma q_{+}\left(x^{-}, \mathbf{b}\right) \\
& \Gamma=1 / 2(1+\mathbf{n} \cdot \gamma) \text { gives spin-dep density }
\end{aligned}
$$

Local operators calculable as x moments on lattice \underline{M}. Göckeler et al PRL98,222001

$$
\widetilde{A}_{T 10}^{\prime \prime} \sim \text { sdd } \quad \text { spin-dependent density }
$$

Schierholtz, Zanotti 2009 -this quantity is not zero, proton is not round

Spin dependent densities-transverseLattice QCDSF, Zanotti, Schierholz...

This is not zero! proton is not round

Shapes of the proton

Relate spin dependent density to experiment Phys.Rev.C76:065209,2007

Field-theoretic spin dependent momentum density is related to the transverse momentum distribution $h_{1 T}^{\perp}$

$$
\Phi^{[\Gamma]}\left(x, \mathbf{K}_{T}\right)=\left.\int \frac{d \xi^{-} d^{2} \xi_{T}}{2(2 \pi)^{3}} e^{i K \cdot \xi}\langle P, S| \bar{\psi}(0) \Gamma \mathcal{L}\left(0, \xi ; n_{-}\right) \psi(\xi)|P, S\rangle\right|_{\xi^{+}=0}
$$

Mulders Tangerman'96

$$
\begin{aligned}
& \Phi^{\left[i \sigma^{i+} \gamma_{5}\right]}\left(x, \mathbf{K}_{T}\right)=S_{T}^{i} h_{1}\left(x, K_{T}^{2}\right)+\frac{\left(K_{T}^{i} K_{T}^{J}-\frac{1}{2} K_{T}^{2} \delta_{i j}\right) S_{T}^{3}}{M^{2}} h_{1 T}^{\perp}\left(x, K_{T}^{2}\right) \\
& \sigma^{i+} \gamma^{5} \sim \gamma^{0} \gamma^{+} \sigma^{i},
\end{aligned}
$$

then relate equal time to $\xi^{+}=0$ by integration over x

Shapes of the proton

Relate spin dependent density to experiment Phys.Rev.C76:065209,2007

Field-theoretic spin dependent momentum density is related to the transverse momentum distribution $h_{1 T}^{\perp}$
$\Phi^{[[]}\left(x, \mathbf{K}_{T}\right)=\left.\int \frac{d \xi^{-} d^{2} \xi_{T}}{2(2 \pi)^{3}} e^{i K \cdot \xi}\langle P, S| \bar{\psi}(0) \Gamma \mathcal{L}\left(0, \xi ; n_{-}\right) \psi(\xi)|P, S\rangle\right|_{\xi^{+}=0}$
Mulders Tangerman'96

$$
\begin{aligned}
& \Phi^{\left[i \sigma^{i+} \gamma_{5}\right]}\left(x, \mathbf{K}_{T}\right)=S_{T}^{i} h_{1}\left(x, K_{T}^{2}\right)+\frac{\left(K_{T}^{i} K_{T}^{J}-\frac{1}{2} K_{T}^{2} \delta_{i j}\right) S_{T}^{3}}{M^{2}} h_{1 T}^{\perp}\left(x, K_{T}^{2}\right) \\
& \sigma^{i+} \gamma^{5} \sim \gamma^{0} \gamma^{+} \sigma^{i},
\end{aligned}
$$

then relate equal time to $\xi^{+}=0$ by integration over x

Transverse Shapes of the Proton

Measure $h_{1 T}^{\perp}: \mathbf{e}, \uparrow \mathbf{p} \rightarrow \mathbf{e}, \pi \mathbf{X}$

H. Avakian LOI at Jlab

Summary

- Form factors, GPDs, TMDs, understood from unified light-front formulation, GPD-coordinate space density,TMD momentum space density
- Neutron central transverse density is negativeconsistent with Cloudy Bag Model
- Proton is not round- lattice QCD spin-dependentdensity is not zero
- Experiment can whether or not proton is round by measuring $h_{1 T}^{\perp}$

Summary

- Form factors, GPDs, TMDs, understood from unified light-front formulation, GPD-coordinate space density,TMD momentum space density
- Neutron central transverse density is negativeconsistent with Cloudy Bag Model
- Proton is not round- lattice QCD spin-dependentdensity is not zero
- Experiment can whether or not proton is round by measuring $h_{1 T}^{\perp}$

The Proton

[^0]: Thursday, October 28, 2010

